🔥
ThermoCombustionH
  • Análisis de procesos reactivos con aplicación industrial empleando hidrocarburos líquidos o gaseosos
  • Instrucciones
    • Consideraciones generales
  • Análisis 1 al 10
    • Análisis 1: Combustión estequiométrica de CO
    • Análisis 2: Análisis gravimétrico y volumétrico. Diagrama de la eficiencia
    • Análisis 3: Combustión a partir de la formulación empírica del combustible
    • Análisis 4: Combustión de un gas natural. Intercambiabilidad de gases.
    • Análisis 5: Estudio de combustión incluyendo eficiencia de la combustión
    • Análisis 6: Diagrama ternario de la flamabilidad. Intercambiabilidad de gases
    • Análisis 7: Comparación de prestaciones de diferentes combustibles (GN y GNL)
    • Análisis 8: Hidrocarburo líquido con aire seco (Ar y CO2)
    • Análisis 9: Conocimiento de caudales de aire y combustible
    • Análisis 10: Combustión incompleta, con análisis exergético
  • Análisis 11 al 20
    • Análisis 11: Análisis de Orsat de productos de combustión
    • Análisis 12: Combustión en reactor cerrado con aire seco y húmedo
    • Análisis 13: Reactor cerrado. Análisis exergético
    • Análisis 14: Reactor cerrado. Mezcla volumétrica de n-butano y oxígeno
    • Análisis 15: Reactor cerrado. Mezcla de etanal y oxígeno
    • Análisis 16: Solución gráfica en la combustión de n-butano
    • Análisis 17: Poderes calorífico a presión y volumen constante
    • Análisis 18: Benceno líquido. Combustión incompleta
    • Análisis 19: Efecto de temperatura del aire y del combustible
    • Análisis 20: Temperatura de rocío, entropía generada y exergía destruida
  • Análisis 21 al 30
    • Análisis 21: Efecto del coeficiente de exceso de aire
    • Análisis 22: Efecto de la disociación química de los productos de combustión
    • Análisis 23: Aire atmosférico húmedo y seco
    • Análisis 24: Composición volumétrica de los productos en base seca, sin presencia de hidrógeno
    • Análisis 25: Turbina de gas de aviación. Diagramas de Sankey y Grassmann
    • Análisis 26: Composición volumétrica de los productos en base seca, sin presencia de hidrógeno
    • Análisis 27: Gas natural con aire húmedo y combustión incompleta
    • Análisis 28: Proceso reactivo con y sin disociación química
    • Análisis 29: Índices de intercambiabilidad, diagramas de Sankey y Grassmann
    • Análisis 30: Análisis másico y termodinámico del proceso de combustión
  • Análisis 31 al 40
    • Análisis 31: Efecto de la humedad relativa y exceso de aire
    • Análisis 32: Análisis de sensibilidad. Metano y metanol
    • Análisis 33: Análisis de sensibilidad. Isooctano
    • Análisis 34: Propiedades críticas de la mezcla
    • Análisis 35: Turbina de gas no regenerativa. Efecto del rendimiento isoentrópico
    • Análisis 36: Turbina de vapor. Análisis de sensibilidad
    • Análisis 37: Temperatura de condensación del H2SO4
    • Análisis 38: Análisis de sensibilidad. Emisiones contaminantes
    • Análisis 39: Análisis energético y exergético en horno industrial
    • Análisis 40: Análisis de sensibilidad. Emisiones contaminantes
  • Análisis 41 al 50
    • Análisis 41: Análisis de sensibilidad de hidrocarburo gaseoso
    • Análisis 42: Turbina de gas. Análisis de sensibilidad
    • Análisis 43: Balance energético para obtener el coeficiente de exceso de aire
    • Análisis 44: Combustión de C2H4(g) con fórmula empírica
    • Análisis 45: Reactor cerrado. Oxi-combustión y aire seco
    • Análisis 46: El hidrógeno, ¿el combustible del futuro? Barreras a superar
    • Análisis 47: Cámara de combustión Turbina de gas con JP-8 (A-1)
    • Análisis 48: Caracterización de diferentes combustibles
    • Análisis 49: Gasolina C7H17, Diesel T-T C14.4H24.9, Fuel Jet C13H23.8
    • Análisis 50: Ensayo experimental en bomba calorimétrica con fórmula empírica
  • Análisis 51 al 60
    • Análisis 51: Benceno en bomba calorimétrica
    • Análisis 52: Cinética química del acetileno
    • Análisis 53: Disociación química, formación de NOx (7 reacciones)
    • Análisis 54: Disociación química, formación NOx (11 reacciones): Modelo de equilibrio químico.
    • Análisis 55: Combustión de CH4. Emisiones NOx
    • Análisis 56: Combustión de hidrógeno. Transición global hacia la energía sostenible
    • Análisis 57: Disociación de etanol gaseoso. Eficiencia exergética del proceso
    • Análisis 58: Generador de vapor. Diagramas de energía y exergía
    • Análisis 59: Enfriamiento evaporativo en ciclo de turbina de gas
    • Análisis 60: Ciclo de turbina de gas. Emisiones NOx
  • Análisis 61 al 70
    • Análisis 61: Reacciones de equilibrio químico y formación de NOx
    • Análisis 62: Ciclo de Brayton regenerativo convencional para avión, con A-1 (JP-8)
    • Análisis 63: Reactor a volumen constante. Presencia de hidrógeno como inquemado
    • Análisis 64: Ciclo de Rankine de doble recalentamiento intermedio con tres etapas
    • Análisis 65: Metano combustiona en cámara de combustión adiabática
    • Análisis 66: Horno industrial con análisis de entropía e irreversibilidad
    • Análisis 67: Gas natural alimenta un motor de encendido por chispa, con presencia de disociación.
    • Análisis 68: Gas de carbón, emisiones de NOx
    • Análisis 69: Presencia de inquemados en la combustión de etano+oxígeno
    • Análisis 70: Horno industrial empleando tolueno
  • Análisis 71 al 80
    • Análisis 71: Combustión de n-decano con defecto de aire. Solución analítica
    • Análisis 72: Acetileno combustiona con exceso de aire. Análisis de entropía
    • Análisis 73: Reacción de desplazamiento del gas de agua (WGSR) water gas shift
    • Análisis 74: Combustión completa de 1 m^3/s de combustible. Análisis exergético
    • Análisis 75: Mezcla gravimétrica de hidrocarburos. Análisis exergético
    • Análisis 76: Mezcla liquida gravimétrica de hidrocarburos
    • Análisis 77: Productos de un proceso de combustión en equilibrio químico
    • Análisis 78: Fórmula empírica con inquemados (CO y C2H6)
    • Análisis 79: Combustión con presencia de CO e H2 como inquemados
    • Análisis 80: Composición molar y másica de los productos de combustión
  • Análisis 81 al 90
    • Análisis 81: Motor de combustión interna con hidrocarburos sin quemar
    • Análisis 82: Obtención de formula química del combustible con hidrocarburo sin quemar
    • Análisis 83: Combustión de Orsat con inquemados (hidrógeno e inquemado)
    • Análisis 84: Combustión de Orsat con hidrógeno inquemado
    • Análisis 85: Productos en base húmeda con hidrógeno
    • Análisis 86: Productos en base húmeda con hidrógeno inquemado
    • Análisis 87: NO(g) en combustión de octano (líquido)
    • Análisis 88: Mezcla másica de aire+fuel en reactor cerrado con la composición molar del flue-gas
    • Análisis 89: Depósito cerrado con propano y aire con dosado relativo conocido
    • Análisis 90: Conocimiento de emisiones, incluyendo NO(g) e hidrocarburos sin quemar
  • Análisis 91 al 100
    • Análisis 91: Determinación de la fórmula química del combustible
    • Análisis 92: Determinación de la fórmula química del combustible
    • Análisis 93: Determinación de la fórmula química del combustible
    • Análisis 94: Depósito rígido y aislado con propano
    • Análisis 95: Generador de vapor a partir del conocimiento del CO2(%)v y CO(%)v en base húmeda
    • Análisis 96: Generador de vapor a partir del conocimiento del CO2(%)v y O2(%)v en base húmeda
    • Análisis 97: Horno industrial conociendo el CO2(%)v, O2(%)v, e H2(%)v en base húmeda
    • Análisis 98: Diagrama de flamabilidad de una mezcla metano+aire con nitrógeno
    • Análisis 99: Depósito cerrado con n-decano en estado líquido
    • Análisis 100: Combustión con biogas y biometano
  • Análisis 101 al 110
    • Análisis 101: Estudio y análisis completo de la gasolina E10
    • Análisis 102: Análisis básico de la combustión, incluyendo flamabilidad.
    • Análisis 103: Diseño de aparatos de gas cuando se prueban diferentes gases
    • Análisis 104: Inflamabilidad de una mezcla de hidrocarburos
    • Análisis 105: Esperanza de vida de un ser humano: Combustión de glucosa
    • Análisis 106: Combustión en sistema abierto y cerrado
    • Análisis 107: Bomba calorimétrica a volumen constante
    • Análisis 108: Análisis completo de combustión de diferentes combustibles
    • Análisis 109: Combustión de la gasolina tipo RF-02-03
    • Análisis 110: Combustión a volumen constante
  • Análisis 111 al 120
    • Análisis 111: Ciclo de Rankine con recalentamiento intermedio y presencia de inquemados
    • Análisis 112: Inyección de hidrógeno en gaseoductos
    • Análisis 113: Gases naturales reales y sintéticos
    • Análisis 114: Método de la eficiencia de pérdidas (método indirecto)
    • Análisis 115: Combustible gaseoso con fórmula empírica volumétrica
    • Análisis 116: Combustión a partir de analizador de Ostwald
    • Análisis 117: Cámara de combustión adiabática
    • Análisis 118: Combustión a volumen constante de metano
    • Análisis 119: Combustión a presión constante de benceno en motor diesel
    • Análisis 120: Combustión a volumen constante en motor de encendido provocado
  • Análisis 121 al 130
    • Análisis 121: Combustión a volumen constante en reactor cerrado
    • Análisis 122: Formación de NO en reactor cerrado
    • Análisis 123: Análisis exergético en cámara de combustión
    • Análisis 124: Reactor adiabático conociendo moles de reactivos
    • Análisis 125: Intercambiabilidad de gases - método de equivalencia británico
    • Análisis 126: Intercambiabilidad de gases - AGA Bulletin 36
    • Análisis 127: Intercambiabilidad de gases - AGA Bulletin 36
    • Análisis 128: Intercambiabilidad de gases - AGA Bulletin 36
    • Análisis 129: Límites de inflamabilidad, 15% H2, 15% CH4, 35% CO2 y 35% N2
    • Análisis 130: Inflamabilidad , en una mezcla de 40% CH4 y 60% CO2
  • Análisis 131 al 133
    • Análisis 131: Límites de inflamabilidad. Método del balance térmico
    • Análisis 132: Combustible con fórmula empírica másica
    • Análisis 133: Reacción de gas de agua. Solución analítica
    • Análisis 134: Oxi-combustión en base húmeda con hidrocarburo inquemado en cámara de combustión
    • Análisis 135: Oxi-combustión con productos en base seca y presencia de H2(g) en horno industrial
    • Análisis 136: Ciclo TG mediante aire con 30% de O2 enriquecido con informe técnico
    • Análisis 137: Combustión adiabática con aire enriquecido de O2
    • Análisis 138: Combustión no adiabática con aire enriquecido de O2 al 25%
    • Análisis 139: Ciclo regenerativo alternativo de TG con Jet-A
    • Análisis 140: Oxi-combustión en horno industrial con productos en base húmeda
  • Análisis 141 al 150
    • Análisis 141: Hidrocarburo sin quemar (CH4) con informe técnico
    • Análisis 142: Formación de carbono puro en forma de hollín en combustión adiabática
    • Análisis 143: Formación de carbono puro en forma de hollín con informe técnico
    • Análisis 144: Hidrógeno y otros hidrocarburos con disociación y NOx en un ciclo de TV
    • Análisis 145: Reducción de CO2 mediante el enriquecimiento con hidrógeno de un gas natural
    • Análisis 146: Propiedades de los biogases y su comparación con un gas natural
  • Análisis 147: Oxicombustión de gas natural con reciclado de gases de combustión
  • Análisis 148: El biometano a partir de gas de síntesis como alternativa al gas natural
  • Análisis 149: Control de las emisiones de SO₃: Corrosión en chimenea y conductos
  • Análisis 150: Mezcla de hidrogeno y amoniaco para una combustión en turbina de gas
  • Análisis 151 al 160
    • Análisis 151: El biohidrógeno, elemento clave en la descarbonización del sector energético
    • A desarrollar
    • A desarrollar
    • A desarrollar
Con tecnología de GitBook
En esta página
  1. Análisis 131 al 133

Análisis 131: Límites de inflamabilidad. Método del balance térmico

Obtención de los límites de inflamabilidad de mezcla gaseosa mediante el método de balance térmico

AnteriorAnálisis 130: Inflamabilidad , en una mezcla de 40% CH4 y 60% CO2SiguienteAnálisis 132: Combustible con fórmula empírica másica

Última actualización hace 1 mes

Estado inflamable con múltiples diluyentes: Una mezcla de gases está compuesta (en volumen) por metano 15.2 %, nitrógeno 79.8 %, dióxido de carbono 5.0 %. Encuentre los límites de inflamabilidad para tal mezcla combustible/diluyente.

El rasgo característico de una prueba de la inflamabilidad es la distancia de propagación de la llama, que debe ser la mitad del espacio inflamable. Si la composición del combustible permite que la llama se extienda por todo el espacio, se denomina explosividad. Si la llama acaba de encenderse, pero no puede propagarse lejos de la fuente de ignición, se llama ignitabilidad. Estos son tres conceptos paralelos sobre la seguridad de las mezclas, sin embargo, solo la inflamabilidad es conocida de forma popular, mientras que los otros dos no pueden probarse ni justificarse teóricamente, por lo que están mal definidos.

Aquí, la ignitabilidad se define como la concentración crítica de combustible que no admite el inicio de la ignición. La ignitabilidad no tiene ninguna dependencia del oxígeno ni de factores ambientales, por lo que es fundamental para ese combustible. Sin embargo, a diferencia de un frente de llama visible que se mueve en las pruebas de inflamabilidad, los criterios de ignición en las pruebas de ignición son difíciles de establecer. Este es un caso límite, físicamente significativo, pero difícil de probar u observar.

La explosividad se define como la capacidad de una llama crítica para propagarse por todo el volumen de la mezcla y desarrollar una presión considerable, mientras que la inflamabilidad se usa para describir aquellas mezclas limites dentro de las cuales la llama se propagará a través de la mezcla indefinidamente, independientemente de si no se desarrolla presión. Generalmente, la explosividad requiere una fuerte fuente de ignición y un criterio de mayor presión. Dado que el oxígeno en el aire de fondo favorece la propagación de la llama, la explosividad es una propiedad del aire de fondo, o específicamente del oxígeno. Dado que el estado completo de la reacción es difícil de cuantificar y validar, se propone un criterio de presión para probar la explosividad. Sin embargo, para hacer coincidir los datos de inflamabilidad, se adoptan diferentes criterios de presión (2, 3 y 7 %) en diferentes pruebas experimentales.

El parámetro más importante que afecta los límites de inflamabilidad es la temperatura, ya que un aumento en la temperatura inicial conduce a una ampliación del rango inflamable.

Para la inflamabilidad de una mezcla de combustible inflamable, los límites de inflamabilidad de una mezcla pueden ser estimados mediante la regla de Le Chatelier. Sin embargo, la regla de Le Chatelier solo funciona con especies de combustible puro. Con diluyentes involucrados en una mezcla, la combinación de combustible y diluyente generará un pseudocombustible, con nuevos límites legibles en el diagrama de inflamabilidad diluida.

El método de balance térmico posee la ventaja de que la contribución de un diluyente se presenta en una forma similar al combustible y comburente. Podemos ver que este método es equivalente a la Regla de Le Chatelier. Sin embargo, el método de Le Chatelier se basa únicamente en los límites de inflamabilidad de los combustibles, por lo que será difícil incorporar la contribución de un diluyente. Este método amplía el rango de aplicación de la ley de Le Chatelier.

Otro método comparable informado en la literatura es el método de balance de energía de Beyler, que es similar al método de balance térmico, pero en este caso se realiza un balance de energía a la temperatura crítica de la llama adiabática.

Empíricamente, se supone que la dependencia de la temperatura es lineal y se expresa como el porcentaje de caída por cada 100 ºC de caída de temperatura. Zabetakis et al. han descubierto que los límites inferiores de los hidrocarburos disminuyen linealmente en aproximadamente un 8 % para un aumento de temperatura de 100 °C. Esto es consistente con la disminución del aumento de entalpía neta del aire de fondo.